首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34195篇
  免费   3992篇
  国内免费   2029篇
工业技术   40216篇
  2024年   86篇
  2023年   543篇
  2022年   976篇
  2021年   1145篇
  2020年   1345篇
  2019年   1126篇
  2018年   910篇
  2017年   1293篇
  2016年   1447篇
  2015年   1553篇
  2014年   2598篇
  2013年   2123篇
  2012年   2674篇
  2011年   3065篇
  2010年   2199篇
  2009年   2303篇
  2008年   2146篇
  2007年   2420篇
  2006年   1941篇
  2005年   1684篇
  2004年   1323篇
  2003年   1131篇
  2002年   884篇
  2001年   730篇
  2000年   529篇
  1999年   434篇
  1998年   326篇
  1997年   268篇
  1996年   215篇
  1995年   189篇
  1994年   135篇
  1993年   97篇
  1992年   96篇
  1991年   66篇
  1990年   55篇
  1989年   58篇
  1988年   46篇
  1987年   10篇
  1986年   3篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
本文在环氧涂料中添加玄武岩鳞片,提高其防腐蚀性能。针对玄武岩鳞片的团聚问题,通过机械力化学改性工艺,采用正硅酸四乙酯、HY-311型钛酸酯偶联剂、E-44型环氧树脂对玄武岩鳞片进行杂化包覆,结果表明,杂化包覆后玄武岩鳞片的沉降时间从2h提高至96 h。杂化包覆玄武岩鳞片添加量为20%涂层的性能最优,附着力为13.40 MPa,耐盐雾时间为2000 h,在3.5%NaCl溶液中浸泡2000 h后,0.01 Hz的阻抗模值仍然有5.15×109 Ω·cm2。  相似文献   
2.
This study focuses on the chemistry, thermal stability, and electrical conductivity of low/intermediate pyrolysis temperature (700?900 °C) polysiloxane derived ceramics. These ceramics were modified with additional carbon derived from divinylbenzene (DVB) added to the precursor. Their electrical properties were investigated for potential uses in micro-electrical mechanical systems (MEMS) and anodes for lithium batteries. The microstructure and chemical composition was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS); thermogravimetric analysis (TGA) provided insight into the thermal stability; and electrochemical impedance spectroscopy (EIS) into the electrical properties of the material. The increase of pyrolysis temperature and carbon content lead to an enhancement of the electrical conductivity, higher than previously reported values for intermediate pyrolysis temperature SiOC polymer derived ceramics. A limit of the amount of DVB that can be added to PHMS to produce a hybrid precursor has also been obtained.  相似文献   
3.
Power conversion efficiency (PCE) and stability are two important properties of perovskite solar cells (PSCs). Particularly, defects in the perovskite films could cause the generation of trap states, thereby increasing the nonradiative recombination. To address this issue, suitable dopants can be incorporated to react with non-bonded atoms or surface dangling bonds to passivate the defects. Herein, we introduced TiI4 into CH3NH3PbI3 (MAPbI3) film and obtained a dense and uniform morphology with large crystal grains and low defect density. The champion cell based on 0.5% TiI4-doped MAPbI3 achieved a PCE as high as 20.55%, which is superior to those based on pristine MAPbI3 (17.64%). Moreover, the optimal solar cell showed remarkable stability without encapsulation. It retained 88.03% of its initial PCE after 300 h of storage in ambient. This work demonstrates TiI4 as a new and effective passivator for MAPbI3 film.  相似文献   
4.
In the present study, 17 wt % TiN reinforced α-β SiAlON composites were sintered at low temperature by susceptor-assisted microwave heating. The effect of TiN addition on dielectrical properties of starting powders, as well as the influence of sintering temperature on phase evolution, microstructure development and mechanical properties of α/β-SiAlON-TiN composites were investigated. The obtained results showed that TiN addition increased the microwave absorbing properties which is reflected in the peak sintering temperature. Thus, the α:β ratio decreased and mechanical properties were improved, especially the fracture toughness of the composites. Furthermore, an estimate of energy consumption during microwave assisted sintering at the laboratory scale is presented. As a result, the highest values for relative density (97.1%), Vickers hardness (13.35 ± 0.47 GPa), and fracture toughness (7.52 ± 0.54 MPa m1/2) were obtained by microwave sintering for 30 min at 1300 °C.  相似文献   
5.
《Ceramics International》2021,47(23):32610-32618
AA7075 + 6%B4C+3%ZrC nano hybrid composite was successfully fabricated, with nano reinforcements composition in AA7075 alloy selected based on previous investigation, to achieve better mechanical performance. Two different sintering techniques, namely conventional and microwave, were implemented to determine the effect on microstructural and mechanical properties. Microstructural investigation was performed with the help of W-SEM. Tensile, compression, and hardness were measured with the help of UTM and Vickers microhardness machine. Porosity was calculated by using Archimedes principle. It was observed that the added nano ZrC particles formed agglomerates and the B4C particles were distributed homogenously. Composites processed by microwave sintering showed excellent mechanical properties compared to the conventionally sintered composites. No intermetallic compounds were detected in microwave sintered composites through XRD analysis, indicating strong and clean interface bonds between matrix and reinforcement particles. High strain to fracture value of 12.24% was noted in microwave sintered nano hybrid composite, while it was 6.12% for conventional sintered one. Fractography revealed no peeling action of reinforcements from the matrix material, and the mode of failure was brittle. It was concluded that, while fabricating nano range hybrid composites, the implementation of advanced sintering technique (microwave sintering) with low sintering temperatures and low sintering times with internal heat generations, helps in eliminating defects that may develop because of high surface energies of nano range reinforcements.  相似文献   
6.
针对致密砂岩油藏大规模体积压裂开发后能量补充困难的问题,利用自主设计制作的大型人造三维岩心物理模型和物理模拟实验舱,开展致密砂岩油藏能量补充方式优化研究。实验结果表明:致密砂岩油藏压裂开发过程中,地层能量损耗严重,采取注水或注气的方式可有效进行能量补充;地层中裂缝规模越大,越有利于原油渗流,后续补充能量的传播范围越广,有助于进一步提高原油采收率;从提高驱油效率和扩大波及系数方面优选吞吐渗吸介质,CO2均优于活性水,CO2吞吐开发在矿场试验中取得了显著的增油效果,因此,CO2吞吐作为一种有效的能量补充方式在致密油开发中展现了良好的应用前景。该文分析了致密砂岩储层水平井压裂开发的渗流规律,优选出致密砂岩储层大规模压裂开发后最佳渗吸介质,可为致密砂岩油藏开发设计提供重要的理论依据。  相似文献   
7.
Recently, researchers have devoted more attention to supercapacitors (SCs) to integrate with batteries in energy storage systems (ESSs) for vehicle applications. In this study, we attempted to characterize the use of SCs in the ESS for a PEM fuel cell vehicle equipped with an alternator to maximize the performance of regenerative braking. We applied lithium-ion batteries (LIBs) and SCs as energy storage devices to examine their effect on ESS. Then we used a hysteresis brake to apply controllable braking force on the flywheel to form hybrid braking (HB) and made efforts to study its behavior to suggest a braking control strategy. We also ran the whole system over the rotational speed to cover the range of driving speed. At last, we sized the SCs for the most commonly used fuel cell electric vehicle (FCEV) in Korea, i.e., Hyundai NEXO, based on the results obtained from the above study by alternator efficiencies.  相似文献   
8.
《Ceramics International》2022,48(8):10921-10931
Coatings were obtained by vacuum electro-spark alloying (VESA), pulsed cathodic arc evaporation (PCAE), magnetron sputtering (MS) techniques and VESA-PCAE-MS hybrid technology using Cr3C2–NiAl electrodes. The structure of the coatings was analyzed using scanning and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Mechanical properties were determined by nanoindentation, while tribological properties were assessed using pin-on-disk tribometer. Corrosion resistance was estimated by voltammetry in 1 N H2SO4 and 3.5%NaCl solutions. Oxidation resistance tests were performed at 800°С in air. The VESA coating had the highest thickness, low friction coefficient and high wear resistance. PCAE coating demonstrated the highest hardness (24 GPa) and elastic recovery (59%), oxidation resistance and superior corrosion resistance both in 1 N H2SO4 (icorr = 70 μА/cm2) and 3.5%NaCl (icorr = 0.74 μА/cm2) solutions. The MS coating had average mechanical properties and low corrosion current density (71 μА/cm2) in 1 N H2SO4. Deposition of coatings using VESA-PCAE-MS hybrid technology led to an increase in corrosion and oxidation resistance at least by 1.5 times in comparison with the VESA coating.  相似文献   
9.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   
10.
This paper aims to provide a review of the conceptual design and theoretical framework of the main control schemes proposed in the literature for unmanned underwater vehicles (UUVs). Additionally, the objective of the paper is not only to present an overview of the recent control architectures validated on UUVs but also to give detailed experimental-based comparative studies of the proposed control schemes. To this end, the main control schemes, including proportional–integral–derivative (PID) based, sliding mode control (SMC) based, adaptive based, observation-based, model predictive control (MPC) based, combined control techniques, are revisited in order to consolidate the principal efforts made in the last two decades by the automatic control community in the field. Besides implementing some key tracking control schemes from the classification mentioned above on Leonard UUV, several real-time experimental scenarios are tested, under different operating conditions, to evaluate and compare the efficiency of the selected tracking control schemes. Furthermore, we point out potential investigation gaps and future research trends at the end of this survey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号